¹³C-NMR AND CNDO/2 CALCULATIONS OF COMPOUNDS CONTAINING SP-HYBRIDISED CARBON. ACETYLENES AND CUMULENES.

J.P.C.M. van Dongen, M.J.A. de Bie and R. Steur Laboratory for Organic Chemistry of the University, Croesestraat 79, Utrecht, The Netherlands

(Received in UK 27 February 1973; accepted for publication 8 March 1973)

The extremely low field shift (about 200 ppm relative to internal TMS^{1,2,3}) of the central sp hybridised carbon in allenes, prompted us to a study of compounds with more extended cumulated double bond systems in order to find out whether or not this resonance position is unique for sp hybridised carbon in such a carbon chain.

Table 1 summarises the ¹³C-NMR data for the compounds

 $R_2C(=C)_n = CR_2$ R=H , n=0-2 R=-() , n=0-4

Figure 1 shows the alternation in the chemical shifts of corresponding carbon atoms, in the functional system C(=C)_=C, with n.

An upfield shift of the C_{α} carbon, when we go to the next higher homologue, is always accompanies by a downfield shift of the C_{β} carbon and an upfield shift of the C_{γ} carbon (if present), and vice versa. As a consequence the internal shift $\delta C_{\beta} - \delta C_{\alpha}$ is much larger for the cumulenes with n odd than for those with n even.

A close correlation is observed between the mentioned variations of δC_{α} , δC_{β} and δC_{γ} and the total charge densities, calculated by the CNDO/2 method, on the corresponding atoms of the unsubstituted systems with n=0-5 (table 1, fig. 2). For all calculations known geometries were used, except for the cumulenes with $n \ge 3$ for which bond lengths and bond angles were estimated from the data for the cumulenes with $n \le 2$. However, within the limits of the CNDO/2 approximations, the results are not critically dependent of those geometries. The calculated charges on C_{β} in allene and pentatetraene are the same, but the measured shifts in the corresponding tetraphenylderivatives, for which no CNDO/2 calculations could be performed because of computer limitations, are not. However, this may be explained by the fact that in the case of the allene four phenyl groups occupy similar positions with respect to the one C_{β} atom, whereas in the pentatetraene a C_{β} atom has two phenyl groups in a β and two phenyl groups in a δ position. In the tetraphenylsubstituted cumulenes, the shifts of the C_{α} atoms are parallelled by the shifts of the corresponding C_1 and C_2 carbons of the phenyl groups, whereas the meta and para carbons, C_3 and C_4 , remain more or less at the same position (fig. 3). This indicates that, at least in

Compound	Functional system d			Phenylgroup ^{e,f}				Calculated	
	δC _α	δC _β	δCγ	٥c,	δC2	δC ₃	δC4	densiti 10 ⁻³ e.	es in u.
Bh ₂ C=CPh ₂	141.01 (123.13)			143.72	131.31	127.62	126.39	a:-28	
Ph2C=C=CPh2	112.53 (73.57)	208.26 (212.47)		136.28	128.38	128.52	127.33	a:-101	β :+67
Ph2C=C=C=CPh2	122.74 (118.00)	152.03 (171.10)		138.81	129.46	128.42	127.94	a:-48	β:-1
Ph2C=C=C=C=CPh2	117.77	181.61	119.25	136.22	129.15	128.53	128.21	α:-95 γ:-85	β :+67
Ph2C=C=C=C=C=CPh2	124.71	149.42	127.33	137.96	129.16	128.35	128.35	α:-65 γ:-13	β :+19
H2C=C=C=C=C=CH2								α:-93 γ:-71	β:+58 δ:+66
PhC=CPh ^g	89.69 (73.16)			123.52	131.67	128.54	128.43	α:-64	
PhCEC-CECPh h	81.50 (66.30)	74.37 (67.52)		121.88	132.35	128.42	129.10	a:-83	B:+14

Table 1. ¹³C chemical shifts^{a,b} and charge densities^C for the systems $R_2C(=C)=CR_2$ and $R-(C=C)_n-R$

a) δ values in ppm (+ 0.05), relative to TMS internal, were measured on a XL 100/15 FT system using ²H lock, in 1 M solutions in CCl₄/CD₃COCD₃ 3:1 b) shifts for the systems with R=H are given between parentheses c) calculated by the CND0/2 method for the systems with R=H d) the carbon atoms in the functional system are numbered: $R_2C_{\alpha}=C_{\beta}=C_{\gamma}=\cdots$, $R=C_{\alpha}\equiv C_{\beta}=\cdots$ e) the carbon atoms in the phenylgroups are numbered: h) $\delta C_{\alpha}=81.7$; $\delta C_{\beta}=74.0$, ref. 5

Table 2. ¹³ C chemical	shifts ^a of	substituted	butatrienes
-----------------------------------	------------------------	-------------	-------------

	Substitu	ent		R, R	x ^{1 R} 3 ^R 4		
R ₁	R2	R3	R4	δC _α	δCβ	δC _{β1}	$\frac{\delta c_{\alpha^1}}{\alpha^1}$
н	н	н	H b	118.0	171.1	171.1	118.0
Ph	Ph	Ph	Ph	122.5	152.0	152.0	122.5
CH ₃	CH ₃	H	OCH ₃ ^b	99.4	160.1	137.2	124.5
	-	H	OCH3 b	107.8	158.0	137.8	124.8
СН3	с ₂ н ₅	н	OCH ₃ ^{b,c}	105.8	159.8	139.0	124.4
н	с ₂ н ₅	н	SCH ₃ ^{b,c}	105.5	161.5	152.0	102.9
Ph	CH2OH	SCH3	SCH3	113.3	158.3	141.6	120.9
H	н	н	OC2H5	76.6	166.5	136.2	128.5
H	H	H	OC(CH ₃) ₃	77.4	164.5	138.1	124.1

a) See table 1, note a b) CW measurement c) mean values of the corresponding δ -values of the cis and trans isomers; maximum value of $|\delta_{cis} - \delta_{trans}|$ is 0.36 ppm

-8

x 10⁻³.e

these compounds, the substituent effects are transmitted mainly by an inductive mechanism. The mesomeric interaction is decreased by the approximately 30-40° rotation of the phenyl groups out of the plane defined by C_1 , C_{α} and C_{β}^4 . This steric inhibition of mesomeric interaction is also in accordance with the observation in allenes that the additivity rules for substituent effects break down when two bulky groups (i.e. phenyl groups) are substituted at the same carbon 2. parallelled too by the variation of the shifts of the C, phenyl carbon atoms, reflecting an inductive interaction. However, the shift variation of the C_2 and C_4 carbon atoms of the phenyl groups is opposite to that of carbon C1, reflecting a mesomeric substituent effect. The large difference in diamagnetic anisotropy of the cumulenic and acetylenic π systems is mainly responsible for the observed average difference of about 15 ppm between the C_1 phenyl carbons in the tetraphenyl cumulenes and those in the diphenyl acetylenes. This anisotropy difference is of course also largely responsible for, for instance, the shift difference of at least 70 ppm between the C_{β} in butatriene, tetraphenyl butatriene or tetraphenyl hexapentaene and the C_{R} in butadiyne or diphenyl butadiyne. The CNDO/2 calculations for the non-substituted butatriene, hexapentaene and butadiyne indicate very similar charges on these C_g atoms.

In substituted butatrienes (table 2) there is a reasonable correlation of the C_{β} resonance position with the C_{β} resonance position of the corresponding 1- or 1,1substituted ethylenes. The sensitivity of the C_{β} resonance position to substitution is, in both systems, almost identical (fig. 4). In allenes the C_{β} resonance position is about 3 times less sensitive to substitution.² Relative shifts in the butatrienes are easily explained on the basis of mesomeric and inductive substituent effects.

Acknowledgement. We are indebted to dr. P. Vermeer for his synthesis of tetraphenyl pentatetraene.

References

- 1. R.A. Friedel, H.L. Retcofsky, J. Amer. Chem. Soc. 85, 1300 (1963)
- R. Steur, J.P.C.M. van Dongen, M.J.A. de Bie, W. Drenth, J.W. de Haan and L.J.M. v.d. Ven, Tetrahedron Lett. 1971, 3307
- 3. J.K. Crandall, S.A. Sojha, J. Amer. Chem. Soc. 94, 5084 (1972)
- 4. G. Favini, M. Simonetta, Theoret. Chim. Acta 1, 294 (1963)
- 5. G.C. Levi and G.L. Nelson, Carbon-13 nuclear magnetic resonance for organic chemists, Wiley Interscience, New York, 1972